Review Which of the following claims about the Tyr TRP2 and TRP1 mammalian genes is most likely to BR accurate?

Mẹo Hướng dẫn Which of the following claims about the Tyr TRP2 and TRP1 mammalian genes is most likely to BR accurate? Mới Nhất

Dương Anh Tuấn đang tìm kiếm từ khóa Which of the following claims about the Tyr TRP2 and TRP1 mammalian genes is most likely to BR accurate? được Cập Nhật vào lúc : 2022-09-08 10:26:02 . Với phương châm chia sẻ Thủ Thuật về trong nội dung bài viết một cách Chi Tiết Mới Nhất. Nếu sau khi Read tài liệu vẫn ko hiểu thì hoàn toàn có thể lại phản hồi ở cuối bài để Ad lý giải và hướng dẫn lại nha.

1. Lin J.Y., Fisher D.E. Melanocyte biology and skin pigmentation. Nature. 2007;445:843–850. doi: 10.1038/nature05660. [PubMed] [CrossRef] [Google Scholar]

Nội dung chính
    Are Tyr TRP2 and TRP1 on the same chromosome?Which of the following best supports the claim that binding of miRNA Delta to the miRNA binding site inhibits translation of gene mRNA?Which of the following claims best explains why keratinocytes do not produce melanin quizlet?Which of the following evidence best supports a claim that tryptophan functions as a corepressor?

2. Delevoye C. Melanin transfer: The keratinocytes are more than gluttons. J. Investig. Dermatol. 2014;134:877–879. doi: 10.1038/jid.2013.487. [PubMed] [CrossRef] [Google Scholar]

3. Lee A.Y. Recent progress in melasma pathogenesis. Pigment Cell Melanoma Res. 2015;28:648–660. doi: 10.1111/pcmr.12404. [PubMed] [CrossRef] [Google Scholar]

4. Fu C., Chen J., Lu J., Yi L., Tong X., Kang L., Pei S., Ouyang Y., Jiang L., Ding Y., et al. Roles of inflammation factors in melanogenesis (Review) Mol. Med. Rep. 2022;21:1421–1430. doi: 10.3892/mmr.2022.10950. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Marks M.S., Seabra M.C. The melanosome: Membrane dynamics in black and white. Nat. Rev. Mol. Cell Biol. 2001;2:738–748. doi: 10.1038/35096009. [PubMed] [CrossRef] [Google Scholar]

6. Boissy R.E. Melanosome transfer to and translocation in the keratinocyte. Exp. Dermatol. 2003;12((Suppl. 2)):5–12. doi: 10.1034/j.1600-0625.12.s2.1.x. [PubMed] [CrossRef] [Google Scholar]

7. Frisoli M.L., Essien K., Harris J.E. Vitiligo: Mechanisms of Pathogenesis and Treatment. Annu. Rev. Immunol. 2022;38:621–648. doi: 10.1146/annurev-immunol-100919-023531. [PubMed] [CrossRef] [Google Scholar]

8. Taieb A., Morice-Picard F., Jouary T., Ezzedine K., Cario-Andre M., Gauthier Y. Segmental vitiligo as the possible expression of cutaneous somatic mosaicism: Implications for common non-segmental vitiligo. Pigment Cell Melanoma Res. 2008;21:646–652. doi: 10.1111/j.1755-148X.2008.00511.x. [PubMed] [CrossRef] [Google Scholar]

9. van Geel N., Speeckaert R., Melsens E., Toelle S.P., Speeckaert M., De Schepper S., Lambert J., Brochez L. The distribution pattern of segmental vitiligo: Clues for somatic mosaicism. Br. J. Dermatol. 2013;168:56–64. doi: 10.1111/bjd.12013. [PubMed] [CrossRef] [Google Scholar]

10. van Geel N., Mollet I., Brochez L., Dutre M., De Schepper S., Verhaeghe E., Lambert J., Speeckaert R. New insights in segmental vitiligo: Case report and review of theories. Br. J. Dermatol. 2012;166:240–246. doi: 10.1111/j.1365-2133.2011.10650.x. [PubMed] [CrossRef] [Google Scholar]

11. Westerhof W., d’Ischia M. Vitiligo puzzle: The pieces fall in place. Pigment Cell Res. 2007;20:345–359. doi: 10.1111/j.1600-0749.2007.00399.x. [PubMed] [CrossRef] [Google Scholar]

12. Gauthier Y., Cario Andre M., Taieb A. A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy? Pigment Cell Res. 2003;16:322–332. doi: 10.1034/j.1600-0749.2003.00070.x. [PubMed] [CrossRef] [Google Scholar]

13. Speeckaert R., Dugardin J., Lambert J., Lapeere H., Verhaeghe E., Speeckaert M.M., van Geel N. Critical appraisal of the oxidative stress pathway in vitiligo: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2022;32:1089–1098. doi: 10.1111/jdv.14792. [PubMed] [CrossRef] [Google Scholar]

14. Qiao Z., Wang X., Xiang L., Zhang C. Dysfunction of Autophagy: A Possible Mechanism Involved in the Pathogenesis of Vitiligo by Breaking the Redox Balance of Melanocytes. Oxid. Med. Cell. Longev. 2022;2022:3401570. doi: 10.1155/2022/3401570. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. He Y., Li S., Zhang W., Dai W., Cui T., Wang G., Gao T., Li C. Dysregulated autophagy increased melanocyte sensitivity to H2O2-induced oxidative stress in vitiligo. Sci. Rep. 2022;7:42394. doi: 10.1038/srep42394. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Yang Z., Klionsky D.J. Mammalian autophagy: Core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 2010;22:124–131. doi: 10.1016/j.ceb.2009.11.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Yorimitsu T., Klionsky D.J. Autophagy: Molecular machinery for self-eating. Cell Death Differ. 2005;12((Suppl. 2)):1542–1552. doi: 10.1038/sj.cdd.4401765. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Murase D., Hachiya A., Takano K., Hicks R., Visscher M.O., Kitahara T., Hase T., Takema Y., Yoshimori T. Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes. J. Investig. Dermatol. 2013;133:2416–2424. doi: 10.1038/jid.2013.165. [PubMed] [CrossRef] [Google Scholar]

19. Yamaguchi Y., Brenner M., Hearing V.J. The regulation of skin pigmentation. J. Biol. Chem. 2007;282:27557–27561. doi: 10.1074/jbc.R700026200. [PubMed] [CrossRef] [Google Scholar]

20. Hunt G., Todd C., Kyne S., Thody A.J. ACTH stimulates melanogenesis in cultured human melanocytes. J. Endocrinol. 1994;140:R1–R3. doi: 10.1677/joe.0.140R001. [PubMed] [CrossRef] [Google Scholar]

21. Hunt G., Todd C., Cresswell J.E., Thody A.J. Alpha-melanocyte stimulating hormone and its analogue Nle4DPhe7 alpha-MSH affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. Pt 1J. Cell Sci. 1994;107:205–211. doi: 10.1242/jcs.107.1.205. [PubMed] [CrossRef] [Google Scholar]

22. Hill S.E., Buffey J., Thody A.J., Oliver I., Bleehen S.S., Mac Neil S. Investigation of the regulation of pigmentation in alpha-melanocyte-stimulating hormone responsive and unresponsive cultured B16 melanoma cells. Pigment Cell Res. 1989;2:161–166. doi: 10.1111/j.1600-0749.1989.tb00181.x. [PubMed] [CrossRef] [Google Scholar]

23. Kim M., Shibata T., Kwon S., Park T.J., Kang H.Y. Ultraviolet-irradiated endothelial cells secrete stem cell factor and induce epidermal pigmentation. Sci. Rep. 2022;8:4235. doi: 10.1038/s41598-018-22608-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Vanover J.C., Spry M.L., Hamilton L., Wakamatsu K., Ito S., D’Orazio J.A. Stem cell factor rescues tyrosinase expression and pigmentation in discreet anatomic locations in albino mice. Pigment Cell Melanoma Res. 2009;22:827–838. doi: 10.1111/j.1755-148X.2009.00617.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Vachtenheim J., Borovansky J. “Transcription physiology” of pigment formation in melanocytes: Central role of MITF. Exp. Dermatol. 2010;19:617–627. doi: 10.1111/j.1600-0625.2009.01053.x. [PubMed] [CrossRef] [Google Scholar]

26. Millington G.W. Proopiomelanocortin (POMC): The cutaneous roles of its melanocortin products and receptors. Clin. Exp. Dermatol. 2006;31:407–412. doi: 10.1111/j.1365-2230.2006.02128.x. [PubMed] [CrossRef] [Google Scholar]

27. D’Orazio J., Fisher D.E. Central role for cAMP signaling in pigmentation and UV resistance. Cell Cycle. 2011;10:8–9. doi: 10.4161/cc.10.1.14292. [PubMed] [CrossRef] [Google Scholar]

28. Rodriguez C.I., Setaluri V. Cyclic AMP (cAMP) signaling in melanocytes and melanoma. Arch. Biochem. Biophys. 2014;563:22–27. doi: 10.1016/j.abb.2014.07.003. [PubMed] [CrossRef] [Google Scholar]

29. Saha B., Singh S.K., Sarkar C., Bera R., Ratha J., Tobin D.J., Bhadra R. Activation of the Mitf promoter by lipid-stimulated activation of p38-stress signalling to CREB. Pigment Cell Res. 2006;19:595–605. doi: 10.1111/j.1600-0749.2006.00348.x. [PubMed] [CrossRef] [Google Scholar]

30. Gonzalez G.A., Montminy M.R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB serine 133. Cell. 1989;59:675–680. doi: 10.1016/0092-8674(89)90013-5. [PubMed] [CrossRef] [Google Scholar]

31. Bertolotto C., Abbe P., Hemesath T.J., Bille K., Fisher D.E., Ortonne J.P., Ballotti R. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 1998;142:827–835. doi: 10.1083/jcb.142.3.827. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Huber W.E., Price E.R., Widlund H.R., Du J., Davis I.J., Wegner M., Fisher D.E. A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. J. Biol. Chem. 2003;278:45224–45230. doi: 10.1074/jbc.M309036200. [PubMed] [CrossRef] [Google Scholar]

33. Li P.H., Liu L.H., Chang C.C., Gao R., Leung C.H., Ma D.L., David Wang H.M. Silencing Stem Cell Factor Gene in Fibroblasts to Regulate Paracrine Factor Productions and Enhance c-Kit Expression in Melanocytes on Melanogenesis. Int. J. Mol. Sci. 2022;19:1475. doi: 10.3390/ijms19051475. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Flaherty K.T., Hodi F.S., Fisher D.E. From genes to drugs: Targeted strategies for melanoma. Nat. Rev. Cancer. 2012;12:349–361. doi: 10.1038/nrc3218. [PubMed] [CrossRef] [Google Scholar]

35. Bonaventure J., Domingues M.J., Larue L. Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment Cell Melanoma Res. 2013;26:316–325. doi: 10.1111/pcmr.12080. [PubMed] [CrossRef] [Google Scholar]

36. Ahn J.H., Jin S.H., Kang H.Y. LPS induces melanogenesis through p38 MAPK activation in human melanocytes. Arch. Dermatol. Res. 2008;300:325–329. doi: 10.1007/s00403-008-0863-0. [PubMed] [CrossRef] [Google Scholar]

37. D’Mello S.A., Finlay G.J., Baguley B.C., Askarian-Amiri M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2022;17:1144. doi: 10.3390/ijms17071144. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Kim J.Y., Lee E.J., Ahn Y., Park S., Kim S.H., Oh S.H. A chemical compound from fruit extract of Juglans mandshurica inhibits melanogenesis through p-ERK-associated MITF degradation. Phytomedicine. 2022;57:57–64. doi: 10.1016/j.phymed.2022.12.007. [PubMed] [CrossRef] [Google Scholar]

39. Hwang E., Lee T.H., Lee W.J., Shim W.S., Yeo E.J., Kim S., Kim S.Y. A novel synthetic Piper amide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+ influx via TRPM1 channels. Pigment Cell Melanoma Res. 2022;29:81–91. doi: 10.1111/pcmr.12430. [PubMed] [CrossRef] [Google Scholar]

40. Widlund H.R., Horstmann M.A., Price E.R., Cui J., Lessnick S.L., Wu M., He X., Fisher D.E. Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J. Cell Biol. 2002;158:1079–1087. doi: 10.1083/jcb.200202049. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Zhu P.Y., Yin W.H., Wang M.R., Dang Y.Y., Ye X.Y. Andrographolide suppresses melanin synthesis through Akt/GSK3beta/beta-catenin signal pathway. J. Dermatol. Sci. 2015;79:74–83. doi: 10.1016/j.jdermsci.2015.03.013. [PubMed] [CrossRef] [Google Scholar]

42. Hwang I., Park J.H., Park H.S., Choi K.A., Seol K.C., Oh S.I., Kang S., Hong S. Neural stem cells inhibit melanin production by activation of Wnt inhibitors. J. Dermatol. Sci. 2013;72:274–283. doi: 10.1016/j.jdermsci.2013.08.006. [PubMed] [CrossRef] [Google Scholar]

43. Stamos J.L., Weis W.I. The beta-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 2013;5:a007898. doi: 10.1101/cshperspect.a007898. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

44. Takeda K., Yasumoto K., Takada R., Takada S., Watanabe K., Udono T., Saito H., Takahashi K., Shibahara S. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J. Biol. Chem. 2000;275:14013–14016. doi: 10.1074/jbc.C000113200. [PubMed] [CrossRef] [Google Scholar]

45. Pillaiyar T., Namasivayam V., Manickam M., Jung S.H. Inhibitors of Melanogenesis: An Updated Review. J. Med. Chem. 2022;61:7395–7418. doi: 10.1021/acs.jmedchem.7b00967. [PubMed] [CrossRef] [Google Scholar]

46. Liu T., DeCostanzo A.J., Liu X., Wang H., Hallagan S., Moon R.T., Malbon C.C. G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science. 2001;292:1718–1722. doi: 10.1126/science.1060100. [PubMed] [CrossRef] [Google Scholar]

47. Galluzzi L., Bravo-San Pedro J.M., Levine B., Green D.R., Kroemer G. Pharmacological modulation of autophagy: Therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 2022;16:487–511. doi: 10.1038/nrd.2022.22. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Tsuboyama K., Koyama-Honda I., Sakamaki Y., Koike M., Morishita H., Mizushima N. The ATG conjugation systems are important for degradation of the inner autophagosomal membrane. Science. 2022;354:1036–1041. doi: 10.1126/science.aaf6136. [PubMed] [CrossRef] [Google Scholar]

49. Gwinn D.M., Shackelford D.B., Egan D.F., Mihaylova M.M., Mery A., Vasquez D.S., Turk B.E., Shaw R.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell. 2008;30:214–226. doi: 10.1016/j.molcel.2008.03.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Zachari M., Ganley I.G. The mammalian ULK1 complex and autophagy initiation. Essays Biochem. 2022;61:585–596. doi: 10.1042/EBC20170021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Hosokawa N., Hara T., Kaizuka T., Kishi C., Takamura A., Miura Y., Iemura S., Natsume T., Takehana K., Yamada N., et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell. 2009;20:1981–1991. doi: 10.1091/mbc.e08-12-1248. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Jung C.H., Jun C.B., Ro S.H., Kim Y.M., Otto N.M., Cao J., Kundu M., Kim D.H. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell. 2009;20:1992–2003. doi: 10.1091/mbc.e08-12-1249. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Furuya N., Yu J., Byfield M., Pattingre S., Levine B. The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy. 2005;1:46–52. doi: 10.4161/auto.1.1.1542. [PubMed] [CrossRef] [Google Scholar]

54. Itakura E., Kishi C., Inoue K., Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell. 2008;19:5360–5372. doi: 10.1091/mbc.e08-01-0080. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Kihara A., Noda T., Ishihara N., Ohsumi Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 2001;152:519–530. doi: 10.1083/jcb.152.3.519. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Liang C., Feng P., Ku B., Dotan I., Canaani D., Oh B.H., Jung J.U. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol. 2006;8:688–699. doi: 10.1038/ncb1426. [PubMed] [CrossRef] [Google Scholar]

57. Fimia G.M., Stoykova A., Romagnoli A., Giunta L., Di Bartolomeo S., Nardacci R., Corazzari M., Fuoco C., Ucar A., Schwartz P., et al. Ambra1 regulates autophagy and development of the nervous system. Nature. 2007;447:1121–1125. doi: 10.1038/nature05925. [PubMed] [CrossRef] [Google Scholar]

58. Ohsumi Y. Molecular dissection of autophagy: Two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2001;2:211–216. doi: 10.1038/35056522. [PubMed] [CrossRef] [Google Scholar]

59. Kim J., Dalton V.M., Eggerton K.P., Scott S.V., Klionsky D.J. Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways. Mol. Biol. Cell. 1999;10:1337–1351. doi: 10.1091/mbc.10.5.1337. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

60. Kuma A., Mizushima N., Ishihara N., Ohsumi Y. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 2002;277:18619–18625. doi: 10.1074/jbc.M111889200. [PubMed] [CrossRef] [Google Scholar]

61. Satoo K., Noda N.N., Kumeta H., Fujioka Y., Mizushima N., Ohsumi Y., Inagaki F. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 2009;28:1341–1350. doi: 10.1038/emboj.2009.80. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Murrow L., Malhotra R., Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat. Cell Biol. 2015;17:300–310. doi: 10.1038/ncb3112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Gatica D., Lahiri V., Klionsky D.J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 2022;20:233–242. doi: 10.1038/s41556-018-0037-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Ganesan A.K., Ho H., Bodemann B., Petersen S., Aruri J., Koshy S., Richardson Z., Le L.Q.., Krasieva T., Roth M.G., et al. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet. 2008;4:e1000298. doi: 10.1371/journal.pgen.1000298. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Yasumoto K., Yokoyama K., Shibata K., Tomita Y., Shibahara S. Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol. Cell. Biol. 1995;15:1833. doi: 10.1128/MCB.15.3.1833. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

66. Bertolotto C., Busca R., Abbe P., Bille K., Aberdam E., Ortonne J.P., Ballotti R. Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: Pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol. Cell. Biol. 1998;18:694–702. doi: 10.1128/MCB.18.2.694. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Du J., Miller A.J., Widlund H.R., Horstmann M.A., Ramaswamy S., Fisher D.E. MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am. J. Pathol. 2003;163:333–343. doi: 10.1016/S0002-9440(10)63657-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Taherbhoy A.M., Tait S.W., Kaiser S.E., Williams A.H., Deng A., Nourse A., Hammel M., Kurinov I., Rock C.O., Green D.R., et al. Atg8 transfer from Atg7 to Atg3: A distinctive E1–E2 architecture and mechanism in the autophagy pathway. Mol. Cell. 2011;44:451–461. doi: 10.1016/j.molcel.2011.08.034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Qiao Z., Xu Z., Xiao Q.., Yang Y., Ying J., Xiang L., Zhang C. Dysfunction of ATG7-dependent autophagy dysregulates the antioxidant response and contributes to oxidative stress-induced biological impairments in human epidermal melanocytes. Cell Death Discov. 2022;6:31. doi: 10.1038/s41420-020-0266-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Zhang C.F., Gruber F., Ni C., Mildner M., Koenig U., Karner S., Barresi C., Rossiter H., Narzt M.S., Nagelreiter I.M., et al. Suppression of autophagy dysregulates the antioxidant response and causes premature senescence of melanocytes. J. Investig. Dermatol. 2015;135:1348–1357. doi: 10.1038/jid.2014.439. [PubMed] [CrossRef] [Google Scholar]

71. Yun W.J., Kim E.Y., Park J.E., Jo S.Y., Bang S.H., Chang E.J., Chang S.E. Microtubule-associated protein light chain 3 is involved in melanogenesis via regulation of MITF expression in melanocytes. Sci. Rep. 2022;6:19914. doi: 10.1038/srep19914. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Rai A., Chatterjee B., Bhowmick S., Sagar S., Roy S.S. Beclin 1 controls pigmentation by changing the nuclear localization of melanogenic factor MITF. Biochem. Biophys. Res. Commun. 2022;528:719–725. doi: 10.1016/j.bbrc.2022.05.118. [PubMed] [CrossRef] [Google Scholar]

73. Grimmel M., Backhaus C., Proikas-Cezanne T. WIPI-Mediated Autophagy and Longevity. Cells. 2015;4:202–217. doi: 10.3390/cells4020202. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Ho H., Kapadia R., Al-Tahan S., Ahmad S., Ganesan A.K. WIPI1 coordinates melanogenic gene transcription and melanosome formation via TORC1 inhibition. J. Biol. Chem. 2011;286:12509–12523. doi: 10.1074/jbc.M110.200543. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Kalie E., Razi M., Tooze S.A. ULK1 regulates melanin levels in MNT-1 cells independently of mTORC1. PLoS ONE. 2013;8:e75313. doi: 10.1371/journal.pone.0075313. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Theos A.C., Tenza D., Martina J.A., Hurbain I., Peden A.A., Sviderskaya E.V., Stewart A., Robinson M.S., Bennett D.C., Cutler D.F., et al. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol. Biol. Cell. 2005;16:5356–5372. doi: 10.1091/mbc.e05-07-0626. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Setty S.R., Tenza D., Truschel S.T., Chou E., Sviderskaya E.V., Theos A.C., Lamoreux M.L., Di Pietro S.M., Starcevic M., Bennett D.C., et al. BLOC-1 is required for cargo-specific sorting from vacuolar early endosomes toward lysosome-related organelles. Mol. Biol. Cell. 2007;18:768–780. doi: 10.1091/mbc.e06-12-1066. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Dennis M.K., Mantegazza A.R., Snir O.L., Tenza D., Acosta-Ruiz A., Delevoye C., Zorger R., Sitaram A., de Jesus-Rojas W., Ravichandran K., et al. BLOC-2 targets recycling endosomal tubules to melanosomes for cargo delivery. J. Cell Biol. 2015;209:563–577. doi: 10.1083/jcb.201410026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Dennis M.K., Delevoye C., Acosta-Ruiz A., Hurbain I., Romao M., Hesketh G.G., Goff P.S., Sviderskaya E.V., Bennett D.C., Luzio J.P., et al. BLOC-1 and BLOC-3 regulate VAMP7 cycling to and from melanosomes via distinct tubular transport carriers. J. Cell Biol. 2022;214:293–308. doi: 10.1083/jcb.201605090. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Fukuda M. Rab GTPases: Key players in melanosome biogenesis, transport, and transfer. Pigment Cell Melanoma Res. 2022;34:222–235. doi: 10.1111/pcmr.12931. [PubMed] [CrossRef] [Google Scholar]

81. Takahashi Y., Coppola D., Matsushita N., Cualing H.D., Sun M., Sato Y., Liang C., Jung J.U., Cheng J.Q.., Mule J.J., et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol. 2007;9:1142–1151. doi: 10.1038/ncb1634. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

82. Wu S., He Y., Qiu X., Yang W., Liu W., Li X., Li Y., Shen H.M., Wang R., Yue Z., et al. Targeting the potent Beclin 1-UVRAG coiled-coil interaction with designed peptides enhances autophagy and endolysosomal trafficking. Proc. Natl. Acad. Sci. USA. 2022;115:E5669–E5678. doi: 10.1073/pnas.1721173115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Yang Y., Jang G.B., Yang X., Wang Q.., He S., Li S., Quach C., Zhao S., Li F., Yuan Z., et al. Central role of autophagic UVRAG in melanogenesis and the suntan response. Proc. Natl. Acad. Sci. USA. 2022;115:E7728–E7737. doi: 10.1073/pnas.1803303115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

84. Ramkumar A., Murthy D., Raja D.A., Singh A., Krishnan A., Khanna S., Vats A., Thukral L., Sharma P., Sivasubbu S., et al. Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks. Autophagy. 2022;13:1331–1347. doi: 10.1080/15548627.2022.1327509. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Murase D., Kusaka-Kikushima A., Hachiya A., Fullenkamp R., Stepp A., Imai A., Ueno M., Kawabata K., Takahashi Y., Hase T., et al. Autophagy Declines with Premature Skin Aging resulting in Dynamic Alterations in Skin Pigmentation and Epidermal Differentiation. Int. J. Mol. Sci. 2022;21:5708. doi: 10.3390/ijms21165708. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Kim J.Y., Lee E.J., Ahn Y., Park S., Bae Y.J., Kim T.G., Oh S.H. Cathepsin L, a Target of Hypoxia-Inducible Factor-1-alpha, Is Involved in Melanosome Degradation in Melanocytes. Int. J. Mol. Sci. 2022;22:8596. doi: 10.3390/ijms22168596. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. Kim E.S., Jo Y.K., Park S.J., Chang H., Shin J.H., Choi E.S., Kim J.B., Seok S.H., Kim J.S., Oh J.S., et al. ARP101 inhibits alpha-MSH-stimulated melanogenesis by regulation of autophagy in melanocytes. FEBS Lett. 2013;587:3955–3960. doi: 10.1016/j.febslet.2013.10.027. [PubMed] [CrossRef] [Google Scholar]

88. Lee K.W., Ryu H.W., Oh S.S., Park S., Madhi H., Yoo J., Park K.H., Kim K.D. Depigmentation of alpha-melanocyte-stimulating hormone-treated melanoma cells by beta-mangostin is mediated by selective autophagy. Exp. Dermatol. 2022;26:585–591. doi: 10.1111/exd.13233. [PubMed] [CrossRef] [Google Scholar]

89. Park H.J., Jo D.S., Choi H., Bae J.E., Park N.Y., Kim J.B., Choi J.Y., Kim Y.H., Oh G.S., Chang J.H., et al. Melasolv induces melanosome autophagy to inhibit pigmentation in B16F1 cells. PLoS ONE. 2022;15:e0239019. doi: 10.1371/journal.pone.0239019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

90. Kim E.S., Chang H., Choi H., Shin J.H., Park S.J., Jo Y.K., Choi E.S., Baek S.Y., Kim B.G., Chang J.W., et al. Autophagy induced by resveratrol suppresses alpha-MSH-induced melanogenesis. Exp. Dermatol. 2014;23:204–206. doi: 10.1111/exd.12337. [PubMed] [CrossRef] [Google Scholar]

91. Yang Z., Zeng B., Pan Y., Huang P., Wang C. Autophagy participates in isoliquiritigenin-induced melanin degradation in human epidermal keratinocytes through PI3K/AKT/mTOR signaling. Biomed. Pharmacother. 2022;97:248–254. doi: 10.1016/j.biopha.2022.10.070. [PubMed] [CrossRef] [Google Scholar]

92. Yang H.L., Lin C.P., Vudhya Gowrisankar Y., Huang P.J., Chang W.L., Shrestha S., Hseu Y.C. The anti-melanogenic effects of ellagic acid through induction of autophagy in melanocytes and suppression of UVA-activated alpha-MSH pathways via Nrf2 activation in keratinocytes. Biochem. Pharmacol. 2022;185:114454. doi: 10.1016/j.bcp.2022.114454. [PubMed] [CrossRef] [Google Scholar]

93. Kim E.S., Shin J.H., Seok S.H., Kim J.B., Chang H., Park S.J., Jo Y.K., Choi E.S., Park J.S., Yeom M.H., et al. Autophagy mediates anti-melanogenic activity of 3′-ODI in B16F1 melanoma cells. Biochem. Biophys. Res. Commun. 2013;442:165–170. doi: 10.1016/j.bbrc.2013.11.048. [PubMed] [CrossRef] [Google Scholar]

94. Jeong D., Park S.H., Kim M.H., Lee S., Cho Y.K., Kim Y.A., Park B.J., Lee J., Kang H., Cho J.Y. Anti-Melanogenic Effects of Ethanol Extracts of the Leaves and Roots of Patrinia villosa (Thunb.) Juss through Their Inhibition of CREB and Induction of ERK and Autophagy. Molecules. 2022;25:5375. doi: 10.3390/molecules25225375. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Kim P.S., Shin J.H., Jo D.S., Shin D.W., Choi D.H., Kim W.J., Park K., Kim J.K., Joo C.G., Lee J.S., et al. Anti-melanogenic activity of schaftoside in Rhizoma Arisaematis by increasing autophagy in B16F1 cells. Biochem. Biophys. Res. Commun. 2022;503:309–315. doi: 10.1016/j.bbrc.2022.06.021. [PubMed] [CrossRef] [Google Scholar]

96. Katsuyama Y., Taira N., Yoshioka M., Okano Y., Masaki H. 3-O-Glyceryl-2-O-hexyl Ascorbate Suppresses Melanogenesis through Activation of the Autophagy System. Biol. Pharm. Bull. 2022;41:824–827. doi: 10.1248/bpb.b17-01042. [PubMed] [CrossRef] [Google Scholar]

97. Yun C.Y., Choi N., Lee J.U., Lee E.J., Kim J.Y., Choi W.J., Oh S.H., Sung J.H. Marliolide Derivative Induces Melanosome Degradation via Nrf2/p62-Mediated Autophagy. Int. J. Mol. Sci. 2022;22:3995. doi: 10.3390/ijms22083995. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Kim J.Y., Kim J., Ahn Y., Lee E.J., Hwang S., Almurayshid A., Park K., Chung H.J., Kim H.J., Lee S.H., et al. Autophagy induction can regulate skin pigmentation by causing melanosome degradation in keratinocytes and melanocytes. Pigment Cell Melanoma Res. 2022;33:403–415. doi: 10.1111/pcmr.12838. [PubMed] [CrossRef] [Google Scholar]

99. Kim H.M., Oh S., Yang J.Y., Sun H.J., Jang M., Kang D., Son K.H., Byun K. Evaluating Whether Radiofrequency Irradiation Attenuated UV-B-Induced Skin Pigmentation by Increasing Melanosomal Autophagy and Decreasing Melanin Synthesis. Int. J. Mol. Sci. 2022;22:10724. doi: 10.3390/ijms221910724. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Cho Y.H., Park J.E., Lim D.S., Lee J.S. Tranexamic acid inhibits melanogenesis by activating the autophagy system in cultured melanoma cells. J. Dermatol. Sci. 2022;88:96–102. doi: 10.1016/j.jdermsci.2022.05.019. [PubMed] [CrossRef] [Google Scholar]

101. Ho H., Ganesan A.K. The pleiotropic roles of autophagy regulators in melanogenesis. Pigment Cell Melanoma Res. 2011;24:595–604. doi: 10.1111/j.1755-148X.2011.00889.x. [PubMed] [CrossRef] [Google Scholar]

102. Rogov V., Dotsch V., Johansen T., Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell. 2014;53:167–178. doi: 10.1016/j.molcel.2013.12.014. [PubMed] [CrossRef] [Google Scholar]

Are Tyr TRP2 and TRP1 on the same chromosome?

The TYR , TRP2 , and TRP1 genes are identical genes since they are activated by the same transcription factor. The TYR , TRP2 , and TRP1 genes may be located on different chromosomes but with identical operator sequences.

Which of the following best supports the claim that binding of miRNA Delta to the miRNA binding site inhibits translation of gene mRNA?

Which of the following best supports the claim that binding of miRNA‑delta to the miRNA binding site inhibits translation of gene Q. mRNA? When the miRNA binding site sequence is altered, translation of Q. mRNA occurs in the presence of miRNA-delta.

Which of the following claims best explains why keratinocytes do not produce melanin quizlet?

Which of the following claims best explains why keratinocytes do not produce melanin? Keratinocytes do not express the MITF gene. In mammals, the dark color of skin, hair, and eyes is due to a pigment called melanin. Melanin is produced by specialized skin cells called melanocytes.

Which of the following evidence best supports a claim that tryptophan functions as a corepressor?

Which of the following evidence best supports a claim that tryptophan functions as a corepressor? When trpR is mutated, the trp operon is transcribed regardless of tryptophan levels. A cell needs to metabolize the substrate illustrated in Figure 1 for a vital cellular function. Tải thêm tài liệu liên quan đến nội dung bài viết Which of the following claims about the Tyr TRP2 and TRP1 mammalian genes is most likely to BR accurate?

Clip Which of the following claims about the Tyr TRP2 and TRP1 mammalian genes is most likely to BR accurate? ?

Bạn vừa Read tài liệu Với Một số hướng dẫn một cách rõ ràng hơn về Review Which of the following claims about the Tyr TRP2 and TRP1 mammalian genes is most likely to BR accurate? tiên tiến nhất

Share Link Download Which of the following claims about the Tyr TRP2 and TRP1 mammalian genes is most likely to BR accurate? miễn phí

Hero đang tìm một số trong những Share Link Down Which of the following claims about the Tyr TRP2 and TRP1 mammalian genes is most likely to BR accurate? miễn phí.

Hỏi đáp thắc mắc về Which of the following claims about the Tyr TRP2 and TRP1 mammalian genes is most likely to BR accurate?

Nếu sau khi đọc nội dung bài viết Which of the following claims about the Tyr TRP2 and TRP1 mammalian genes is most likely to BR accurate? vẫn chưa hiểu thì hoàn toàn có thể lại Comment ở cuối bài để Admin lý giải và hướng dẫn lại nha #claims #Tyr #TRP2 #TRP1 #mammalian #genes #accurate